Bytevid Social Logo
    • البحث المتقدم
  • زائر
    • تسجيل الدخول
    • التسجيل
    • الوضع الليلي
Gurpreet255 Cover Image
User Image
اسحب لتعديل الصورة
Gurpreet255 Profile Picture
Gurpreet255

@Gurpreet255

  • الجدول الزمني
  • المجموعات
  • الإعجابات
  • الإصدقاء
  • الصور
  • الفيديو
  • بكرات
Gurpreet255 profile picture Gurpreet255 profile picture
Gurpreet255
6 ساعة - ترجم

How do you interpret skewness and kurtosis in data

Two important statistical concepts are kurtosis and skewness. They describe the shape of distributions in data analysis. Understanding these measures provides deeper insights into a dataset’s underlying structure, which can be useful for preparing data to be used in modeling, hypothesis tests, or business decisions. The skewness of a dataset and its kurtosis are more sophisticated than basic measures such as mean and standard deviation. https://www.sevenmentor.com/da....ta-science-course-in


Skewness is the asymmetry in the distribution of data values. Skewness is equal to zero in a distribution that is perfectly symmetrical, such as the normal distribution. Positive skew means that the tail of the right distribution (higher values), is longer and fatter than its left counterpart. This means there are more high values, which pull the mean towards the median. It is common to see this in wealth or income distributions where a few high values can inflate the mean. A negative skew is when the left tail of values (lower values), which indicates more extreme values, is longer. This pulls the mean further to the right. This can happen in situations like exam results, where the majority of students score well, but a small number score significantly less.


Kurtosis measures, on the contrary, the “tailedness”, that is, the weight or lightness of the tails in comparison with a normal distribution. It can be used to identify outliers, and their extremes. In practical analysis, excess kurtosis can be calculated by subtracting 3 from the actual value of kurtosis. Positive excess kurtosis, or leptokurtic, indicates a heavy tail and sharp peak. This implies a higher likelihood of outliers. It is crucial in risk management. This is especially true in financial data where extreme values may indicate potential risks. A negative excess (platykurtic), on the other hand, indicates a flat peak and light tails. This means fewer extreme outliers.


In practice, skewness can affect the outcome of statistical modeling. Many statistical techniques such as linear regressio and ANOVA assume normality in residuals. This implies minimal skewness, and a kurtosis that is close to a normal distribution. Normalizing data can be done if the skewness of the data is significant. Transformations such as log, square root or Box-Cox are used. If not taken into account, high kurtosis may also affect standard errors and confidence ranges.


The context in which the data is presented will also influence how these metrics are interpreted. In psychological tests, for example, a positively-skewed distribution may indicate that the majority of participants have low anxiety levels, while a small number report extremely high anxiety. In contrast, a significant kurtosis in data from quality control could suggest that it is necessary to investigate any outliers which may indicate production defects.


In addition, statistical software will often highlight skewness values and kurtosis that are significantly different from zero or three, respectively. This is especially true for large samples where even small deviations may be statistically significant. But statistical significance is not always the same as practical significance. Analysts should consider the magnitude of the deviation and its impact on the analysis results. Data Science Course in Pune


Skewness and Kurtosis can be used to understand the shape and characteristics a dataset. They can be used to detect asymmetry or outliers and guide data preprocessing such as transformations and outlier treatment. By interpreting these measures carefully, you can ensure more accurate statistical modeling. Understanding how data differs from the norm helps reveal underlying patterns, which can help you make better decisions.

In practice, skewness can affect the outcome of statistical modeling. Many statistical techniques such as linear regressio and ANOVA assume normality in residuals. This implies minimal skewness, and a kurtosis that is close to a normal distribution. Normalizing data can be done if the skewness of the data is significant. Transformations such as log, square root or Box-Cox are used. If not taken into account, high kurtosis may also affect standard errors and confidence ranges.


The context in which the data is presented will also influence how these metrics are interpreted. In psychological tests, for example, a positively-skewed distribution may indicate that the majority of participants have low anxiety levels, while a small number report extremely high anxiety. In contrast, a significant kurtosis in data from quality control could suggest that it is necessary to investigate any outliers which may indicate production defects.

Data Science Course in Pune with Placement Support

Data Science Course in Pune with practical learning and job-focused skills. Enroll in professional Data Science Classes in Pune for career advancement.
إعجاب
علق
شارك
 تحميل المزيد من المنشورات
    معلومات
    • ذكر
    • المشاركات 1
    الألبومات 
    (0)
    الإصدقاء 
    (0)
    الإعجابات 
    (1)
    المجموعات 
    (1)

© 2025 Bytevid Social

اللغة

  • حول
  • الدليل
  • مدونة
  • إتصل بنا
  • المطورين
  • أكثر
    • سياسة الخصوصية
    • شروط الاستخدام

الغاء الصداقه

هل أنت متأكد أنك تريد غير صديق؟

الإبلاغ عن هذا المستخدم

مهم!

هل تريد بالتأكيد إزالة هذا العضو من عائلتك؟

لقد نقزت Gurpreet255

تمت إضافة عضو جديد بنجاح إلى قائمة عائلتك!

اقتصاص الصورة الرمزية الخاصة بك

avatar

تعزيز صورة ملفك الشخصي

الرصيد المتوفر

0

صور


© 2025 Bytevid Social

  • الصفحة الرئيسية
  • حول
  • إتصل بنا
  • سياسة الخصوصية
  • شروط الاستخدام
  • مدونة
  • المطورين
  • اللغة

© 2025 Bytevid Social

  • الصفحة الرئيسية
  • حول
  • إتصل بنا
  • سياسة الخصوصية
  • شروط الاستخدام
  • مدونة
  • المطورين
  • اللغة

تم الإبلاغ عن التعليق بنجاح.

تمت إضافة المشاركة بنجاح إلى المخطط الزمني!

لقد بلغت الحد المسموح به لعدد 5000 من الأصدقاء!

خطأ في حجم الملف: يتجاوز الملف الحد المسموح به (92 MB) ولا يمكن تحميله.

يتم معالجة الفيديو الخاص بك، وسوف نعلمك عندما تكون جاهزة للعرض.

تعذر تحميل ملف: نوع الملف هذا غير متوافق.

لقد اكتشفنا بعض محتوى البالغين على الصورة التي قمت بتحميلها ، وبالتالي فقد رفضنا عملية التحميل.

مشاركة المشاركة على مجموعة

مشاركة إلى صفحة

حصة للمستخدم

تم إرسال المنشور الخاص بك ، سنراجع المحتوى الخاص بك قريبًا.

لتحميل الصور ومقاطع الفيديو والملفات الصوتية ، يجب الترقية إلى عضو محترف. لترقية الى مزايا أكثر

تعديل العرض

0%

إضافة المستوى








حدد صورة
حذف المستوى الخاص بك
هل أنت متأكد من أنك تريد حذف هذا المستوى؟

التعليقات

من أجل بيع المحتوى الخاص بك ومنشوراتك، ابدأ بإنشاء بعض الحزم. تحقيق الدخل

الدفع عن طريق المحفظة

أضف الحزمة

حذف عنوانك

هل أنت متأكد من أنك تريد حذف هذا العنوان؟

قم بإزالة حزمة تحقيق الدخل الخاصة بك

هل أنت متأكد أنك تريد حذف هذه الحزمة؟

إلغاء الاشتراك

هل أنت متأكد أنك تريد إلغاء الاشتراك من هذا المستخدم؟ ضع في اعتبارك أنك لن تتمكن من مشاهدة أي من المحتوى الذي يتم تحقيق الدخل منه.

تنبيه الدفع

أنت على وشك شراء العناصر، هل تريد المتابعة؟
طلب استرداد

اللغة

  • Arabic
  • Bengali
  • Chinese
  • Croatian
  • Danish
  • Dutch
  • English
  • Filipino
  • French
  • German
  • Hebrew
  • Hindi
  • Indonesian
  • Italian
  • Japanese
  • Korean
  • Persian
  • Portuguese
  • Russian
  • Spanish
  • Swedish
  • Turkish
  • Urdu
  • Vietnamese