Bytevid Social Logo
    • Ricerca avanzata
  • Ospite
    • Entra
    • Iscriviti
    • Modalità notturna
Gurpreet255 Cover Image
User Image
Trascinare per riposizionare la copertura
Gurpreet255 Profile Picture
Gurpreet255

@Gurpreet255

  • Sequenza temporale
  • Gruppi
  • Mi piace
  • Amici
  • Foto
  • Video
  • Bobine
Gurpreet255 profile picture Gurpreet255 profile picture
Gurpreet255
11 ore - Tradurre

How do you interpret skewness and kurtosis in data

Two important statistical concepts are kurtosis and skewness. They describe the shape of distributions in data analysis. Understanding these measures provides deeper insights into a dataset’s underlying structure, which can be useful for preparing data to be used in modeling, hypothesis tests, or business decisions. The skewness of a dataset and its kurtosis are more sophisticated than basic measures such as mean and standard deviation. https://www.sevenmentor.com/da....ta-science-course-in


Skewness is the asymmetry in the distribution of data values. Skewness is equal to zero in a distribution that is perfectly symmetrical, such as the normal distribution. Positive skew means that the tail of the right distribution (higher values), is longer and fatter than its left counterpart. This means there are more high values, which pull the mean towards the median. It is common to see this in wealth or income distributions where a few high values can inflate the mean. A negative skew is when the left tail of values (lower values), which indicates more extreme values, is longer. This pulls the mean further to the right. This can happen in situations like exam results, where the majority of students score well, but a small number score significantly less.


Kurtosis measures, on the contrary, the “tailedness”, that is, the weight or lightness of the tails in comparison with a normal distribution. It can be used to identify outliers, and their extremes. In practical analysis, excess kurtosis can be calculated by subtracting 3 from the actual value of kurtosis. Positive excess kurtosis, or leptokurtic, indicates a heavy tail and sharp peak. This implies a higher likelihood of outliers. It is crucial in risk management. This is especially true in financial data where extreme values may indicate potential risks. A negative excess (platykurtic), on the other hand, indicates a flat peak and light tails. This means fewer extreme outliers.


In practice, skewness can affect the outcome of statistical modeling. Many statistical techniques such as linear regressio and ANOVA assume normality in residuals. This implies minimal skewness, and a kurtosis that is close to a normal distribution. Normalizing data can be done if the skewness of the data is significant. Transformations such as log, square root or Box-Cox are used. If not taken into account, high kurtosis may also affect standard errors and confidence ranges.


The context in which the data is presented will also influence how these metrics are interpreted. In psychological tests, for example, a positively-skewed distribution may indicate that the majority of participants have low anxiety levels, while a small number report extremely high anxiety. In contrast, a significant kurtosis in data from quality control could suggest that it is necessary to investigate any outliers which may indicate production defects.


In addition, statistical software will often highlight skewness values and kurtosis that are significantly different from zero or three, respectively. This is especially true for large samples where even small deviations may be statistically significant. But statistical significance is not always the same as practical significance. Analysts should consider the magnitude of the deviation and its impact on the analysis results. Data Science Course in Pune


Skewness and Kurtosis can be used to understand the shape and characteristics a dataset. They can be used to detect asymmetry or outliers and guide data preprocessing such as transformations and outlier treatment. By interpreting these measures carefully, you can ensure more accurate statistical modeling. Understanding how data differs from the norm helps reveal underlying patterns, which can help you make better decisions.

In practice, skewness can affect the outcome of statistical modeling. Many statistical techniques such as linear regressio and ANOVA assume normality in residuals. This implies minimal skewness, and a kurtosis that is close to a normal distribution. Normalizing data can be done if the skewness of the data is significant. Transformations such as log, square root or Box-Cox are used. If not taken into account, high kurtosis may also affect standard errors and confidence ranges.


The context in which the data is presented will also influence how these metrics are interpreted. In psychological tests, for example, a positively-skewed distribution may indicate that the majority of participants have low anxiety levels, while a small number report extremely high anxiety. In contrast, a significant kurtosis in data from quality control could suggest that it is necessary to investigate any outliers which may indicate production defects.

Data Science Course in Pune with Placement Support

Data Science Course in Pune with practical learning and job-focused skills. Enroll in professional Data Science Classes in Pune for career advancement.
Mi piace
Commento
Condividi
 Carica piu notizie
    Informazioni
    • Maschio
    • messaggi 1
    Albums 
    (0)
    Amici 
    (0)
    Mi piace 
    (1)
    Gruppi 
    (1)

© 2025 Bytevid Social

Lingua

  • Su di noi
  • Direttorio
  • blog
  • Contattaci
  • Sviluppatori
  • Più
    • Privacy Policy
    • Condizioni d'uso

Unfriend

Sei sicuro di voler disapprovare?

Segnala questo utente

Importante!

Sei sicuro di voler rimuovere questo membro dalla tua famiglia?

Hai poked Gurpreet255

Nuovo membro è stato aggiunto con successo alla tua lista di famiglia!

Ritaglia il tuo avatar

avatar

Migliora la tua immagine del profilo

Saldo disponibile

0

immagini


© 2025 Bytevid Social

  • Home
  • Su di noi
  • Contattaci
  • Privacy Policy
  • Condizioni d'uso
  • blog
  • Sviluppatori
  • Lingua

© 2025 Bytevid Social

  • Home
  • Su di noi
  • Contattaci
  • Privacy Policy
  • Condizioni d'uso
  • blog
  • Sviluppatori
  • Lingua

Commento riportato con successo.

Lalberino è stato aggiunto con successo alla tua timeline!

Hai raggiunto il limite di 5000 amici!

Errore di dimensione del file: il file supera il limite consentito (92 MB) e non può essere caricato.

Il tuo video viene elaborato, ti faremo sapere quando è pronto per la visualizzazione.

Impossibile caricare un file: questo tipo di file non è supportato.

Abbiamo rilevato alcuni contenuti per adulti nell'immagine caricata, pertanto abbiamo rifiutato la procedura di caricamento.

Condividi post su un gruppo

Condividi su una pagina

Condividi per l'utente

Il tuo post è stato inviato, esamineremo presto i tuoi contenuti.

Per caricare immagini, video e file audio, devi effettuare lupgrade a un membro professionista. Aggiornamento a Pro

Modifica offerta

0%

Aggiungi Tier.








Selezionare unimmagine
Elimina il tuo livello
Sei sicuro di voler cancellare questo livello?

Recensioni

Per vendere i tuoi contenuti e i tuoi post, inizia creando alcuni pacchetti. Monetizzazione

Pagare con il portafoglio

Aggiungi pacchetto

Elimina il tuo indirizzo

Sei sicuro di voler eliminare questo indirizzo?

Rimuovi il pacchetto di monetizzazione

Sei sicuro di voler eliminare questo pacchetto?

Annulla l'iscrizione

Sei sicuro di voler annullare l'iscrizione a questo utente? Tieni presente che non sarai in grado di visualizzare nessuno dei loro contenuti monetizzati.

Avviso di pagamento

Stai per acquistare gli articoli, vuoi procedere?
Richiedere un rimborso

Lingua

  • Arabic
  • Bengali
  • Chinese
  • Croatian
  • Danish
  • Dutch
  • English
  • Filipino
  • French
  • German
  • Hebrew
  • Hindi
  • Indonesian
  • Italian
  • Japanese
  • Korean
  • Persian
  • Portuguese
  • Russian
  • Spanish
  • Swedish
  • Turkish
  • Urdu
  • Vietnamese