Bytevid Social Logo
    • tìm kiếm nâng cao
  • Khách mời
    • Đăng nhập
    • Đăng ký
    • Chế độ ban đêm
Gurpreet255 Cover Image
User Image
Kéo để định vị lại trang bìa
Gurpreet255 Profile Picture
Gurpreet255

@Gurpreet255

  • Mốc thời gian
  • Các nhóm
  • Thích
  • Bạn bè
  • Hình ảnh
  • Video
  • cuộn phim
Gurpreet255 profile picture Gurpreet255 profile picture
Gurpreet255
11 giờ - Dịch

How do you interpret skewness and kurtosis in data

Two important statistical concepts are kurtosis and skewness. They describe the shape of distributions in data analysis. Understanding these measures provides deeper insights into a dataset’s underlying structure, which can be useful for preparing data to be used in modeling, hypothesis tests, or business decisions. The skewness of a dataset and its kurtosis are more sophisticated than basic measures such as mean and standard deviation. https://www.sevenmentor.com/da....ta-science-course-in


Skewness is the asymmetry in the distribution of data values. Skewness is equal to zero in a distribution that is perfectly symmetrical, such as the normal distribution. Positive skew means that the tail of the right distribution (higher values), is longer and fatter than its left counterpart. This means there are more high values, which pull the mean towards the median. It is common to see this in wealth or income distributions where a few high values can inflate the mean. A negative skew is when the left tail of values (lower values), which indicates more extreme values, is longer. This pulls the mean further to the right. This can happen in situations like exam results, where the majority of students score well, but a small number score significantly less.


Kurtosis measures, on the contrary, the “tailedness”, that is, the weight or lightness of the tails in comparison with a normal distribution. It can be used to identify outliers, and their extremes. In practical analysis, excess kurtosis can be calculated by subtracting 3 from the actual value of kurtosis. Positive excess kurtosis, or leptokurtic, indicates a heavy tail and sharp peak. This implies a higher likelihood of outliers. It is crucial in risk management. This is especially true in financial data where extreme values may indicate potential risks. A negative excess (platykurtic), on the other hand, indicates a flat peak and light tails. This means fewer extreme outliers.


In practice, skewness can affect the outcome of statistical modeling. Many statistical techniques such as linear regressio and ANOVA assume normality in residuals. This implies minimal skewness, and a kurtosis that is close to a normal distribution. Normalizing data can be done if the skewness of the data is significant. Transformations such as log, square root or Box-Cox are used. If not taken into account, high kurtosis may also affect standard errors and confidence ranges.


The context in which the data is presented will also influence how these metrics are interpreted. In psychological tests, for example, a positively-skewed distribution may indicate that the majority of participants have low anxiety levels, while a small number report extremely high anxiety. In contrast, a significant kurtosis in data from quality control could suggest that it is necessary to investigate any outliers which may indicate production defects.


In addition, statistical software will often highlight skewness values and kurtosis that are significantly different from zero or three, respectively. This is especially true for large samples where even small deviations may be statistically significant. But statistical significance is not always the same as practical significance. Analysts should consider the magnitude of the deviation and its impact on the analysis results. Data Science Course in Pune


Skewness and Kurtosis can be used to understand the shape and characteristics a dataset. They can be used to detect asymmetry or outliers and guide data preprocessing such as transformations and outlier treatment. By interpreting these measures carefully, you can ensure more accurate statistical modeling. Understanding how data differs from the norm helps reveal underlying patterns, which can help you make better decisions.

In practice, skewness can affect the outcome of statistical modeling. Many statistical techniques such as linear regressio and ANOVA assume normality in residuals. This implies minimal skewness, and a kurtosis that is close to a normal distribution. Normalizing data can be done if the skewness of the data is significant. Transformations such as log, square root or Box-Cox are used. If not taken into account, high kurtosis may also affect standard errors and confidence ranges.


The context in which the data is presented will also influence how these metrics are interpreted. In psychological tests, for example, a positively-skewed distribution may indicate that the majority of participants have low anxiety levels, while a small number report extremely high anxiety. In contrast, a significant kurtosis in data from quality control could suggest that it is necessary to investigate any outliers which may indicate production defects.

Data Science Course in Pune with Placement Support

Data Science Course in Pune with practical learning and job-focused skills. Enroll in professional Data Science Classes in Pune for career advancement.
Giống
Bình luận
Đăng lại
 Tải thêm bài viết
    Thông tin
    • Nam giới
    • bài viết 1
    Tập ảnh 
    (0)
    Bạn bè 
    (0)
    Thích 
    (1)
    Các nhóm 
    (1)

© 2025 Bytevid Social

Ngôn ngữ

  • Về
  • Danh mục
  • Blog
  • Liên hệ chúng tôi
  • Nhà phát triển
  • Hơn
    • Chính sách bảo mật
    • Điều khoản sử dụng

Hủy kết bạn

Bạn có chắc chắn muốn hủy kết bạn không?

Báo cáo người dùng này

Quan trọng!

Bạn có chắc chắn muốn xóa thành viên này khỏi gia đình mình không?

Bạn đã chọc Gurpreet255

Thành viên mới đã được thêm vào danh sách gia đình của bạn thành công!

Cắt hình đại diện của bạn

avatar

Nâng cao hình ảnh hồ sơ của bạn

Số dư khả dụng

0

Hình ảnh


© 2025 Bytevid Social

  • Nhà
  • Về
  • Liên hệ chúng tôi
  • Chính sách bảo mật
  • Điều khoản sử dụng
  • Blog
  • Nhà phát triển
  • Ngôn ngữ

© 2025 Bytevid Social

  • Nhà
  • Về
  • Liên hệ chúng tôi
  • Chính sách bảo mật
  • Điều khoản sử dụng
  • Blog
  • Nhà phát triển
  • Ngôn ngữ

Đã báo cáo bình luận thành công.

Bài đăng đã được thêm vào dòng thời gian của bạn thành công!

Bạn đã đạt đến giới hạn 5000 người bạn của mình!

Lỗi kích thước tệp: Tệp vượt quá giới hạn cho phép (92 MB) và không thể tải lên.

Video của bạn đang được xử lý, Chúng tôi sẽ cho bạn biết khi video sẵn sàng để xem.

Không thể tải tệp lên: Loại tệp này không được hỗ trợ.

Chúng tôi đã phát hiện thấy một số nội dung người lớn trên hình ảnh bạn đã tải lên, do đó chúng tôi đã từ chối quá trình tải lên của bạn.

Chia sẻ bài đăng trên một nhóm

Chia sẻ lên một trang

Chia sẻ với người dùng

Bài viết của bạn đã được gửi, chúng tôi sẽ sớm xem xét nội dung của bạn.

Để tải lên hình ảnh, video và các tệp âm thanh, bạn phải nâng cấp lên thành viên chuyên nghiệp. Nâng cấp lên Pro

Chỉnh sửa phiếu mua hàng

0%

Thêm bậc








Chọn một hình ảnh
Xóa bậc của bạn
Bạn có chắc chắn muốn xóa tầng này không?

Nhận xét

Để bán nội dung và bài đăng của bạn, hãy bắt đầu bằng cách tạo một vài gói. Kiếm tiền

Thanh toán bằng ví

Thêm gói

Xóa địa chỉ của bạn

Bạn có chắc chắn muốn xóa địa chỉ này không?

Xóa gói kiếm tiền của bạn

Bạn có chắc chắn muốn xóa gói này không?

Hủy đăng ký

Bạn có chắc chắn muốn hủy đăng ký khỏi người dùng này không? Hãy nhớ rằng bạn sẽ không thể xem bất kỳ nội dung kiếm tiền nào của họ.

Thông báo Thanh toán

Bạn sắp mua các mặt hàng, bạn có muốn tiếp tục không?
Yêu cầu hoàn lại

Ngôn ngữ

  • Arabic
  • Bengali
  • Chinese
  • Croatian
  • Danish
  • Dutch
  • English
  • Filipino
  • French
  • German
  • Hebrew
  • Hindi
  • Indonesian
  • Italian
  • Japanese
  • Korean
  • Persian
  • Portuguese
  • Russian
  • Spanish
  • Swedish
  • Turkish
  • Urdu
  • Vietnamese