Bytevid Social Logo
    • 고급 검색
  • 손님
    • 로그인
    • 등록하다
    • 야간 모드
Gurpreet255 Cover Image
User Image
드래그하여 덮개 위치 변경
Gurpreet255 Profile Picture
Gurpreet255

@Gurpreet255

  • 타임라인
  • 여러 떼
  • 좋아요
  • 친구들
  • 사진
  • 비디오
  • 릴
Gurpreet255 profile picture Gurpreet255 profile picture
Gurpreet255
11 시간 - 번역하다

How do you interpret skewness and kurtosis in data

Two important statistical concepts are kurtosis and skewness. They describe the shape of distributions in data analysis. Understanding these measures provides deeper insights into a dataset’s underlying structure, which can be useful for preparing data to be used in modeling, hypothesis tests, or business decisions. The skewness of a dataset and its kurtosis are more sophisticated than basic measures such as mean and standard deviation. https://www.sevenmentor.com/da....ta-science-course-in


Skewness is the asymmetry in the distribution of data values. Skewness is equal to zero in a distribution that is perfectly symmetrical, such as the normal distribution. Positive skew means that the tail of the right distribution (higher values), is longer and fatter than its left counterpart. This means there are more high values, which pull the mean towards the median. It is common to see this in wealth or income distributions where a few high values can inflate the mean. A negative skew is when the left tail of values (lower values), which indicates more extreme values, is longer. This pulls the mean further to the right. This can happen in situations like exam results, where the majority of students score well, but a small number score significantly less.


Kurtosis measures, on the contrary, the “tailedness”, that is, the weight or lightness of the tails in comparison with a normal distribution. It can be used to identify outliers, and their extremes. In practical analysis, excess kurtosis can be calculated by subtracting 3 from the actual value of kurtosis. Positive excess kurtosis, or leptokurtic, indicates a heavy tail and sharp peak. This implies a higher likelihood of outliers. It is crucial in risk management. This is especially true in financial data where extreme values may indicate potential risks. A negative excess (platykurtic), on the other hand, indicates a flat peak and light tails. This means fewer extreme outliers.


In practice, skewness can affect the outcome of statistical modeling. Many statistical techniques such as linear regressio and ANOVA assume normality in residuals. This implies minimal skewness, and a kurtosis that is close to a normal distribution. Normalizing data can be done if the skewness of the data is significant. Transformations such as log, square root or Box-Cox are used. If not taken into account, high kurtosis may also affect standard errors and confidence ranges.


The context in which the data is presented will also influence how these metrics are interpreted. In psychological tests, for example, a positively-skewed distribution may indicate that the majority of participants have low anxiety levels, while a small number report extremely high anxiety. In contrast, a significant kurtosis in data from quality control could suggest that it is necessary to investigate any outliers which may indicate production defects.


In addition, statistical software will often highlight skewness values and kurtosis that are significantly different from zero or three, respectively. This is especially true for large samples where even small deviations may be statistically significant. But statistical significance is not always the same as practical significance. Analysts should consider the magnitude of the deviation and its impact on the analysis results. Data Science Course in Pune


Skewness and Kurtosis can be used to understand the shape and characteristics a dataset. They can be used to detect asymmetry or outliers and guide data preprocessing such as transformations and outlier treatment. By interpreting these measures carefully, you can ensure more accurate statistical modeling. Understanding how data differs from the norm helps reveal underlying patterns, which can help you make better decisions.

In practice, skewness can affect the outcome of statistical modeling. Many statistical techniques such as linear regressio and ANOVA assume normality in residuals. This implies minimal skewness, and a kurtosis that is close to a normal distribution. Normalizing data can be done if the skewness of the data is significant. Transformations such as log, square root or Box-Cox are used. If not taken into account, high kurtosis may also affect standard errors and confidence ranges.


The context in which the data is presented will also influence how these metrics are interpreted. In psychological tests, for example, a positively-skewed distribution may indicate that the majority of participants have low anxiety levels, while a small number report extremely high anxiety. In contrast, a significant kurtosis in data from quality control could suggest that it is necessary to investigate any outliers which may indicate production defects.

Data Science Course in Pune with Placement Support

Data Science Course in Pune with practical learning and job-focused skills. Enroll in professional Data Science Classes in Pune for career advancement.
처럼
논평
공유하다
 더 많은 게시물 로드
    정보
    • 남성
    • 게시물 1
    앨범 
    (0)
    친구들 
    (0)
    좋아요 
    (1)
    여러 떼 
    (1)

© {날짜} {사이트 이름}

언어

  • 에 대한
  • 예배 규칙서
  • 블로그
  • 문의하기
  • 개발자
  • 더
    • 개인 정보 정책
    • 이용약관

친구 끊기

정말 친구를 끊으시겠습니까?

이 사용자 신고

중요한!

가족에서 이 구성원을 제거하시겠습니까?

당신은 찌르다 Gurpreet255

새 구성원이 가족 목록에 성공적으로 추가되었습니다!

아바타 자르기

avatar

프로필 사진 향상

사용 가능한 잔액

0

이미지


© {날짜} {사이트 이름}

  • 집
  • 에 대한
  • 문의하기
  • 개인 정보 정책
  • 이용약관
  • 블로그
  • 개발자
  • 언어

© {날짜} {사이트 이름}

  • 집
  • 에 대한
  • 문의하기
  • 개인 정보 정책
  • 이용약관
  • 블로그
  • 개발자
  • 언어

댓글이 성공적으로 보고되었습니다.

게시물이 타임라인에 성공적으로 추가되었습니다!

친구 한도인 5000명에 도달했습니다!

파일 크기 오류: 파일이 허용된 한도(92 MB)를 초과하여 업로드할 수 없습니다.

동영상을 처리 중입니다. 볼 준비가 되면 알려드리겠습니다.

파일을 업로드할 수 없음: 이 파일 형식은 지원되지 않습니다.

업로드한 이미지에서 일부 성인용 콘텐츠가 감지되어 업로드 프로세스를 거부했습니다.

그룹에서 게시물 공유

페이지에 공유

사용자에게 공유

게시물이 제출되었습니다. 곧 콘텐츠를 검토하겠습니다.

이미지, 동영상, 오디오 파일을 업로드하려면 프로 회원으로 업그레이드해야 합니다. 프로로 업그레이드

제안 수정

0%

계층 추가








이미지 선택
계층 삭제
이 계층을 삭제하시겠습니까?

리뷰

콘텐츠와 게시물을 판매하려면 몇 가지 패키지를 만드는 것부터 시작하세요. 수익화

지갑으로 지불

패키지 추가

주소 삭제

이 주소를 삭제하시겠습니까?

수익 창출 패키지 제거

이 패키지를 삭제하시겠습니까?

구독 취소

정말로 이 사용자의 구독을 취소하시겠습니까? 수익 창출 콘텐츠는 볼 수 없다는 점에 유의하세요.

결제 알림

항목을 구매하려고 합니다. 계속하시겠습니까?
환불 요청

언어

  • Arabic
  • Bengali
  • Chinese
  • Croatian
  • Danish
  • Dutch
  • English
  • Filipino
  • French
  • German
  • Hebrew
  • Hindi
  • Indonesian
  • Italian
  • Japanese
  • Korean
  • Persian
  • Portuguese
  • Russian
  • Spanish
  • Swedish
  • Turkish
  • Urdu
  • Vietnamese