Bytevid Social Logo
    • Avanceret søgning
  • Gæst
    • Log på
    • Tilmeld
    • Nattilstand
Gurpreet255 Cover Image
User Image
Træk for at flytte omslaget
Gurpreet255 Profile Picture
Gurpreet255

@Gurpreet255

  • Tidslinje
  • Grupper
  • Kan lide
  • Venner
  • Fotos
  • Videoer
  • Hjul
Gurpreet255 profile picture Gurpreet255 profile picture
Gurpreet255
10 timer - Oversætte

How do you interpret skewness and kurtosis in data

Two important statistical concepts are kurtosis and skewness. They describe the shape of distributions in data analysis. Understanding these measures provides deeper insights into a dataset’s underlying structure, which can be useful for preparing data to be used in modeling, hypothesis tests, or business decisions. The skewness of a dataset and its kurtosis are more sophisticated than basic measures such as mean and standard deviation. https://www.sevenmentor.com/da....ta-science-course-in


Skewness is the asymmetry in the distribution of data values. Skewness is equal to zero in a distribution that is perfectly symmetrical, such as the normal distribution. Positive skew means that the tail of the right distribution (higher values), is longer and fatter than its left counterpart. This means there are more high values, which pull the mean towards the median. It is common to see this in wealth or income distributions where a few high values can inflate the mean. A negative skew is when the left tail of values (lower values), which indicates more extreme values, is longer. This pulls the mean further to the right. This can happen in situations like exam results, where the majority of students score well, but a small number score significantly less.


Kurtosis measures, on the contrary, the “tailedness”, that is, the weight or lightness of the tails in comparison with a normal distribution. It can be used to identify outliers, and their extremes. In practical analysis, excess kurtosis can be calculated by subtracting 3 from the actual value of kurtosis. Positive excess kurtosis, or leptokurtic, indicates a heavy tail and sharp peak. This implies a higher likelihood of outliers. It is crucial in risk management. This is especially true in financial data where extreme values may indicate potential risks. A negative excess (platykurtic), on the other hand, indicates a flat peak and light tails. This means fewer extreme outliers.


In practice, skewness can affect the outcome of statistical modeling. Many statistical techniques such as linear regressio and ANOVA assume normality in residuals. This implies minimal skewness, and a kurtosis that is close to a normal distribution. Normalizing data can be done if the skewness of the data is significant. Transformations such as log, square root or Box-Cox are used. If not taken into account, high kurtosis may also affect standard errors and confidence ranges.


The context in which the data is presented will also influence how these metrics are interpreted. In psychological tests, for example, a positively-skewed distribution may indicate that the majority of participants have low anxiety levels, while a small number report extremely high anxiety. In contrast, a significant kurtosis in data from quality control could suggest that it is necessary to investigate any outliers which may indicate production defects.


In addition, statistical software will often highlight skewness values and kurtosis that are significantly different from zero or three, respectively. This is especially true for large samples where even small deviations may be statistically significant. But statistical significance is not always the same as practical significance. Analysts should consider the magnitude of the deviation and its impact on the analysis results. Data Science Course in Pune


Skewness and Kurtosis can be used to understand the shape and characteristics a dataset. They can be used to detect asymmetry or outliers and guide data preprocessing such as transformations and outlier treatment. By interpreting these measures carefully, you can ensure more accurate statistical modeling. Understanding how data differs from the norm helps reveal underlying patterns, which can help you make better decisions.

In practice, skewness can affect the outcome of statistical modeling. Many statistical techniques such as linear regressio and ANOVA assume normality in residuals. This implies minimal skewness, and a kurtosis that is close to a normal distribution. Normalizing data can be done if the skewness of the data is significant. Transformations such as log, square root or Box-Cox are used. If not taken into account, high kurtosis may also affect standard errors and confidence ranges.


The context in which the data is presented will also influence how these metrics are interpreted. In psychological tests, for example, a positively-skewed distribution may indicate that the majority of participants have low anxiety levels, while a small number report extremely high anxiety. In contrast, a significant kurtosis in data from quality control could suggest that it is necessary to investigate any outliers which may indicate production defects.

Data Science Course in Pune with Placement Support

Data Science Course in Pune with practical learning and job-focused skills. Enroll in professional Data Science Classes in Pune for career advancement.
Synes godt om
Kommentar
Del
 Indlæs flere indlæg
    Info
    • Han
    • indlæg 1
    Albums 
    (0)
    Venner 
    (0)
    Kan lide 
    (1)
    Grupper 
    (1)

© 2025 Bytevid Social

Sprog

  • Om
  • Vejviser
  • Blog
  • Kontakt os
  • Udviklere
  • Mere
    • Fortrolighedspolitik
    • Vilkår for brug

Uven

Er du sikker på, at du vil blive ven?

Rapportér denne bruger

Vigtig!

Er du sikker på, at du vil fjerne dette medlem fra din familie?

Du har stukket Gurpreet255

Nyt medlem blev tilføjet til din familieliste!

Beskær din avatar

avatar

Forbedre dit profilbillede

Disponibel saldo

0

Billeder


© 2025 Bytevid Social

  • Hjem
  • Om
  • Kontakt os
  • Fortrolighedspolitik
  • Vilkår for brug
  • Blog
  • Udviklere
  • Sprog

© 2025 Bytevid Social

  • Hjem
  • Om
  • Kontakt os
  • Fortrolighedspolitik
  • Vilkår for brug
  • Blog
  • Udviklere
  • Sprog

Kommentar rapporteret med succes.

Indlægget blev tilføjet til din tidslinje!

Du har nået din grænse på 5000 venner!

Filstørrelsesfejl: Filen overskrider den tilladte grænse (92 MB) og kan ikke uploades.

Din video behandles. Vi giver dig besked, når den er klar til visning.

Kan ikke uploade en fil: Denne filtype understøttes ikke.

Vi har registreret voksenindhold på det billede, du uploadede, og derfor har vi afvist din uploadproces.

Del opslag på en gruppe

Del til en side

Del med bruger

Dit indlæg blev sendt, vi vil snart gennemgå dit indhold.

For at uploade billeder, videoer og lydfiler skal du opgradere til professionelt medlem. Opgrader til Pro

Rediger tilbud

0%

Tilføj niveau








Vælg et billede
Slet dit niveau
Er du sikker på, at du vil slette dette niveau?

Anmeldelser

For at sælge dit indhold og dine indlæg, start med at oprette et par pakker. Indtægtsgenerering

Betal med tegnebog

Tilføj pakke

Slet din adresse

Er du sikker på, at du vil slette denne adresse?

Fjern din indtægtsgenereringspakke

Er du sikker på, at du vil slette denne pakke?

Opsige abonnement

Er du sikker på, at du vil afmelde denne bruger? Husk, at du ikke vil være i stand til at se noget af deres indtægtsgenererende indhold.

Betalingsadvarsel

Du er ved at købe varerne, vil du fortsætte?
Anmod om tilbagebetaling

Sprog

  • Arabic
  • Bengali
  • Chinese
  • Croatian
  • Danish
  • Dutch
  • English
  • Filipino
  • French
  • German
  • Hebrew
  • Hindi
  • Indonesian
  • Italian
  • Japanese
  • Korean
  • Persian
  • Portuguese
  • Russian
  • Spanish
  • Swedish
  • Turkish
  • Urdu
  • Vietnamese