Bytevid Social Logo
    • Búsqueda Avanzada
  • Huésped
    • Acceder
    • Registrar
    • Modo nocturno
Gurpreet255 Cover Image
User Image
Arrastra la portada para recortarla
Gurpreet255 Profile Picture
Gurpreet255

@Gurpreet255

  • Cronología
  • Grupos
  • Me gusta
  • Amigos
  • Fotos
  • Videos
  • Bobinas
Gurpreet255 profile picture Gurpreet255 profile picture
Gurpreet255
10 horas - Traducciones

How do you interpret skewness and kurtosis in data

Two important statistical concepts are kurtosis and skewness. They describe the shape of distributions in data analysis. Understanding these measures provides deeper insights into a dataset’s underlying structure, which can be useful for preparing data to be used in modeling, hypothesis tests, or business decisions. The skewness of a dataset and its kurtosis are more sophisticated than basic measures such as mean and standard deviation. https://www.sevenmentor.com/da....ta-science-course-in


Skewness is the asymmetry in the distribution of data values. Skewness is equal to zero in a distribution that is perfectly symmetrical, such as the normal distribution. Positive skew means that the tail of the right distribution (higher values), is longer and fatter than its left counterpart. This means there are more high values, which pull the mean towards the median. It is common to see this in wealth or income distributions where a few high values can inflate the mean. A negative skew is when the left tail of values (lower values), which indicates more extreme values, is longer. This pulls the mean further to the right. This can happen in situations like exam results, where the majority of students score well, but a small number score significantly less.


Kurtosis measures, on the contrary, the “tailedness”, that is, the weight or lightness of the tails in comparison with a normal distribution. It can be used to identify outliers, and their extremes. In practical analysis, excess kurtosis can be calculated by subtracting 3 from the actual value of kurtosis. Positive excess kurtosis, or leptokurtic, indicates a heavy tail and sharp peak. This implies a higher likelihood of outliers. It is crucial in risk management. This is especially true in financial data where extreme values may indicate potential risks. A negative excess (platykurtic), on the other hand, indicates a flat peak and light tails. This means fewer extreme outliers.


In practice, skewness can affect the outcome of statistical modeling. Many statistical techniques such as linear regressio and ANOVA assume normality in residuals. This implies minimal skewness, and a kurtosis that is close to a normal distribution. Normalizing data can be done if the skewness of the data is significant. Transformations such as log, square root or Box-Cox are used. If not taken into account, high kurtosis may also affect standard errors and confidence ranges.


The context in which the data is presented will also influence how these metrics are interpreted. In psychological tests, for example, a positively-skewed distribution may indicate that the majority of participants have low anxiety levels, while a small number report extremely high anxiety. In contrast, a significant kurtosis in data from quality control could suggest that it is necessary to investigate any outliers which may indicate production defects.


In addition, statistical software will often highlight skewness values and kurtosis that are significantly different from zero or three, respectively. This is especially true for large samples where even small deviations may be statistically significant. But statistical significance is not always the same as practical significance. Analysts should consider the magnitude of the deviation and its impact on the analysis results. Data Science Course in Pune


Skewness and Kurtosis can be used to understand the shape and characteristics a dataset. They can be used to detect asymmetry or outliers and guide data preprocessing such as transformations and outlier treatment. By interpreting these measures carefully, you can ensure more accurate statistical modeling. Understanding how data differs from the norm helps reveal underlying patterns, which can help you make better decisions.

In practice, skewness can affect the outcome of statistical modeling. Many statistical techniques such as linear regressio and ANOVA assume normality in residuals. This implies minimal skewness, and a kurtosis that is close to a normal distribution. Normalizing data can be done if the skewness of the data is significant. Transformations such as log, square root or Box-Cox are used. If not taken into account, high kurtosis may also affect standard errors and confidence ranges.


The context in which the data is presented will also influence how these metrics are interpreted. In psychological tests, for example, a positively-skewed distribution may indicate that the majority of participants have low anxiety levels, while a small number report extremely high anxiety. In contrast, a significant kurtosis in data from quality control could suggest that it is necessary to investigate any outliers which may indicate production defects.

Data Science Course in Pune with Placement Support

Data Science Course in Pune with practical learning and job-focused skills. Enroll in professional Data Science Classes in Pune for career advancement.
Me gusta
Comentario
Compartir
 Cargar más publicaciones
    Información
    • Hombre
    • Mensajes 1
    Álbumes 
    (0)
    Amigos 
    (0)
    Me gusta 
    (1)
    Grupos 
    (1)

© 2025 Bytevid Social

Idioma

  • Pin
  • Directorio
  • Blog
  • Contacto
  • Developers
  • Más información
    • Política
    • Condiciones

No amigo

¿Estás seguro de que quieres unirte?

Reportar a este usuario

¡Importante!

¿Estás seguro de que deseas eliminar este miembro de tu familia?

Has pinchado Gurpreet255

¡El nuevo miembro se agregó a su lista de familia!

Recorta tu avatar

avatar

Mejora tu foto de perfil

Saldo disponible

0

Imágenes


© 2025 Bytevid Social

  • Inicio
  • Pin
  • Contacto
  • Política
  • Condiciones
  • Blog
  • Developers
  • Idioma

© 2025 Bytevid Social

  • Inicio
  • Pin
  • Contacto
  • Política
  • Condiciones
  • Blog
  • Developers
  • Idioma

Comentario reportado con éxito

¡Se ha agregado el mensaje a tu línea de tiempo!

¡Has alcanzado el límite de 5000 amigos!

Error de tamaño de archivo: El archivo excede el límite permitido (92 MB) y no se puede cargar.

Se está procesando su video, le informaremos cuando esté listo para ver.

No se puede cargar un archivo: este tipo de archivo no es compatible.

Hemos detectado contenido para adultos en la imagen que subiste, por lo tanto, hemos rechazado tu proceso de carga.

Compartir publicación en un grupo

Compartir en una página

Compartir al usuario

Su publicación fue enviada, revisaremos su contenido pronto.

Para cargar imágenes, videos y archivos de audio, debe actualizar a miembro profesional. Para actualizar Pro

Editar oferta

0%

Agregar un nivel








Seleccione una imagen
Elimina tu nivel
¿Estás seguro de que quieres eliminar este nivel?

Comentarios

Para vender su contenido y publicaciones, comience creando algunos paquetes. Monetización

Pagar por billetera

Agregar paquete

Elimina tu dirección

¿Está seguro de que desea eliminar esta dirección?

Elimina tu paquete de monetización

¿Está seguro de que desea eliminar este paquete?

Darse de baja

¿Estás seguro de que quieres darte de baja de este usuario? Tenga en cuenta que no podrá ver ninguno de sus contenidos monetizados.

Alerta de pago

Está a punto de comprar los artículos, ¿desea continuar?
Solicitar un reembolso

Idioma

  • Arabic
  • Bengali
  • Chinese
  • Croatian
  • Danish
  • Dutch
  • English
  • Filipino
  • French
  • German
  • Hebrew
  • Hindi
  • Indonesian
  • Italian
  • Japanese
  • Korean
  • Persian
  • Portuguese
  • Russian
  • Spanish
  • Swedish
  • Turkish
  • Urdu
  • Vietnamese