Bytevid Social Logo
    • Pencarian Lanjutan
  • Tamu
    • Gabung
    • Daftar
    • Mode malam
Gurpreet255 Cover Image
User Image
Seret untuk memposisikan ulang penutup
Gurpreet255 Profile Picture
Gurpreet255

@Gurpreet255

  • Linimasa
  • Grup
  • Suka
  • Teman-teman
  • Foto
  • Video
  • Gulungan
Gurpreet255 profile picture Gurpreet255 profile picture
Gurpreet255
10 jam - Menerjemahkan

How do you interpret skewness and kurtosis in data

Two important statistical concepts are kurtosis and skewness. They describe the shape of distributions in data analysis. Understanding these measures provides deeper insights into a dataset’s underlying structure, which can be useful for preparing data to be used in modeling, hypothesis tests, or business decisions. The skewness of a dataset and its kurtosis are more sophisticated than basic measures such as mean and standard deviation. https://www.sevenmentor.com/da....ta-science-course-in


Skewness is the asymmetry in the distribution of data values. Skewness is equal to zero in a distribution that is perfectly symmetrical, such as the normal distribution. Positive skew means that the tail of the right distribution (higher values), is longer and fatter than its left counterpart. This means there are more high values, which pull the mean towards the median. It is common to see this in wealth or income distributions where a few high values can inflate the mean. A negative skew is when the left tail of values (lower values), which indicates more extreme values, is longer. This pulls the mean further to the right. This can happen in situations like exam results, where the majority of students score well, but a small number score significantly less.


Kurtosis measures, on the contrary, the “tailedness”, that is, the weight or lightness of the tails in comparison with a normal distribution. It can be used to identify outliers, and their extremes. In practical analysis, excess kurtosis can be calculated by subtracting 3 from the actual value of kurtosis. Positive excess kurtosis, or leptokurtic, indicates a heavy tail and sharp peak. This implies a higher likelihood of outliers. It is crucial in risk management. This is especially true in financial data where extreme values may indicate potential risks. A negative excess (platykurtic), on the other hand, indicates a flat peak and light tails. This means fewer extreme outliers.


In practice, skewness can affect the outcome of statistical modeling. Many statistical techniques such as linear regressio and ANOVA assume normality in residuals. This implies minimal skewness, and a kurtosis that is close to a normal distribution. Normalizing data can be done if the skewness of the data is significant. Transformations such as log, square root or Box-Cox are used. If not taken into account, high kurtosis may also affect standard errors and confidence ranges.


The context in which the data is presented will also influence how these metrics are interpreted. In psychological tests, for example, a positively-skewed distribution may indicate that the majority of participants have low anxiety levels, while a small number report extremely high anxiety. In contrast, a significant kurtosis in data from quality control could suggest that it is necessary to investigate any outliers which may indicate production defects.


In addition, statistical software will often highlight skewness values and kurtosis that are significantly different from zero or three, respectively. This is especially true for large samples where even small deviations may be statistically significant. But statistical significance is not always the same as practical significance. Analysts should consider the magnitude of the deviation and its impact on the analysis results. Data Science Course in Pune


Skewness and Kurtosis can be used to understand the shape and characteristics a dataset. They can be used to detect asymmetry or outliers and guide data preprocessing such as transformations and outlier treatment. By interpreting these measures carefully, you can ensure more accurate statistical modeling. Understanding how data differs from the norm helps reveal underlying patterns, which can help you make better decisions.

In practice, skewness can affect the outcome of statistical modeling. Many statistical techniques such as linear regressio and ANOVA assume normality in residuals. This implies minimal skewness, and a kurtosis that is close to a normal distribution. Normalizing data can be done if the skewness of the data is significant. Transformations such as log, square root or Box-Cox are used. If not taken into account, high kurtosis may also affect standard errors and confidence ranges.


The context in which the data is presented will also influence how these metrics are interpreted. In psychological tests, for example, a positively-skewed distribution may indicate that the majority of participants have low anxiety levels, while a small number report extremely high anxiety. In contrast, a significant kurtosis in data from quality control could suggest that it is necessary to investigate any outliers which may indicate production defects.

Data Science Course in Pune with Placement Support

Data Science Course in Pune with practical learning and job-focused skills. Enroll in professional Data Science Classes in Pune for career advancement.
Suka
Komentar
Membagikan
 Muat lebih banyak posting
    Info
    • Pria
    • posting 1
    Album 
    (0)
    Teman-teman 
    (0)
    Suka 
    (1)
    Grup 
    (1)

© {tanggal} {nama_situs}

Bahasa

  • Tentang
  • Direktori
  • Blog
  • Hubungi kami
  • Pengembang
  • Lagi
    • Kebijakan pribadi
    • Syarat Penggunaan

Batalkan pertemanan

Anda yakin ingin membatalkan pertemanan?

Laporkan pengguna ini

Penting!

Yakin ingin menghapus anggota ini dari keluarga Anda?

Anda telah mencolek Gurpreet255

Anggota baru berhasil ditambahkan ke daftar keluarga Anda!

Pangkas avatar Anda

avatar

Sempurnakan gambar profil Anda

Saldo Tersedia

0

Gambar-gambar


© {tanggal} {nama_situs}

  • Rumah
  • Tentang
  • Hubungi kami
  • Kebijakan pribadi
  • Syarat Penggunaan
  • Blog
  • Pengembang
  • Bahasa

© {tanggal} {nama_situs}

  • Rumah
  • Tentang
  • Hubungi kami
  • Kebijakan pribadi
  • Syarat Penggunaan
  • Blog
  • Pengembang
  • Bahasa

Komentar berhasil dilaporkan.

Pos berhasil ditambahkan ke linimasa Anda!

Anda telah mencapai batas 5000 teman!

Kesalahan ukuran file: File melebihi batas yang diizinkan (92 MB) dan tidak dapat diunggah.

Video Anda sedang diproses, Kami akan memberi tahu Anda jika sudah siap untuk dilihat.

Tidak dapat mengunggah file: Jenis file ini tidak didukung.

Kami telah mendeteksi beberapa konten dewasa pada gambar yang Anda unggah, oleh karena itu kami telah menolak proses unggahan Anda.

Bagikan pos di grup

Bagikan ke halaman

Bagikan ke pengguna

Postingan Anda telah dikirim, kami akan segera meninjau konten Anda.

Untuk mengunggah file gambar, video, dan audio, Anda harus meningkatkan ke anggota pro. Upgrade ke yang lebih baik

Sunting Penawaran

0%

Tambahkan tingkat








Pilih gambar
Hapus tingkat Anda
Anda yakin ingin menghapus tingkat ini?

Ulasan

Untuk menjual konten dan postingan Anda, mulailah dengan membuat beberapa paket. Monetisasi

Bayar Dengan Dompet

Tambahkan Paket

Hapus alamat Anda

Anda yakin ingin menghapus alamat ini?

Hapus paket monetisasi Anda

Apakah Anda yakin ingin menghapus paket ini?

Berhenti berlangganan

Apakah Anda yakin ingin berhenti berlangganan dari pengguna ini? Ingatlah bahwa Anda tidak akan dapat melihat konten mereka yang dimonetisasi.

Peringatan Pembayaran

Anda akan membeli item, apakah Anda ingin melanjutkan?
Minta Pengembalian Dana

Bahasa

  • Arabic
  • Bengali
  • Chinese
  • Croatian
  • Danish
  • Dutch
  • English
  • Filipino
  • French
  • German
  • Hebrew
  • Hindi
  • Indonesian
  • Italian
  • Japanese
  • Korean
  • Persian
  • Portuguese
  • Russian
  • Spanish
  • Swedish
  • Turkish
  • Urdu
  • Vietnamese