Bytevid Social Logo
    • Masusing Paghahanap
  • Bisita
    • Mag log in
    • Magrehistro
    • Night mode
Gurpreet255 Cover Image
User Image
Hilahin para mailagay sa tamang posisyon ang cover
Gurpreet255 Profile Picture
Gurpreet255

@Gurpreet255

  • Timeline
  • Mga grupo
  • Mga gusto
  • Mga kaibigan
  • Mga larawan
  • Mga video
  • Mga reel
Gurpreet255 profile picture Gurpreet255 profile picture
Gurpreet255
11 oras - Isalin

How do you interpret skewness and kurtosis in data

Two important statistical concepts are kurtosis and skewness. They describe the shape of distributions in data analysis. Understanding these measures provides deeper insights into a dataset’s underlying structure, which can be useful for preparing data to be used in modeling, hypothesis tests, or business decisions. The skewness of a dataset and its kurtosis are more sophisticated than basic measures such as mean and standard deviation. https://www.sevenmentor.com/da....ta-science-course-in


Skewness is the asymmetry in the distribution of data values. Skewness is equal to zero in a distribution that is perfectly symmetrical, such as the normal distribution. Positive skew means that the tail of the right distribution (higher values), is longer and fatter than its left counterpart. This means there are more high values, which pull the mean towards the median. It is common to see this in wealth or income distributions where a few high values can inflate the mean. A negative skew is when the left tail of values (lower values), which indicates more extreme values, is longer. This pulls the mean further to the right. This can happen in situations like exam results, where the majority of students score well, but a small number score significantly less.


Kurtosis measures, on the contrary, the “tailedness”, that is, the weight or lightness of the tails in comparison with a normal distribution. It can be used to identify outliers, and their extremes. In practical analysis, excess kurtosis can be calculated by subtracting 3 from the actual value of kurtosis. Positive excess kurtosis, or leptokurtic, indicates a heavy tail and sharp peak. This implies a higher likelihood of outliers. It is crucial in risk management. This is especially true in financial data where extreme values may indicate potential risks. A negative excess (platykurtic), on the other hand, indicates a flat peak and light tails. This means fewer extreme outliers.


In practice, skewness can affect the outcome of statistical modeling. Many statistical techniques such as linear regressio and ANOVA assume normality in residuals. This implies minimal skewness, and a kurtosis that is close to a normal distribution. Normalizing data can be done if the skewness of the data is significant. Transformations such as log, square root or Box-Cox are used. If not taken into account, high kurtosis may also affect standard errors and confidence ranges.


The context in which the data is presented will also influence how these metrics are interpreted. In psychological tests, for example, a positively-skewed distribution may indicate that the majority of participants have low anxiety levels, while a small number report extremely high anxiety. In contrast, a significant kurtosis in data from quality control could suggest that it is necessary to investigate any outliers which may indicate production defects.


In addition, statistical software will often highlight skewness values and kurtosis that are significantly different from zero or three, respectively. This is especially true for large samples where even small deviations may be statistically significant. But statistical significance is not always the same as practical significance. Analysts should consider the magnitude of the deviation and its impact on the analysis results. Data Science Course in Pune


Skewness and Kurtosis can be used to understand the shape and characteristics a dataset. They can be used to detect asymmetry or outliers and guide data preprocessing such as transformations and outlier treatment. By interpreting these measures carefully, you can ensure more accurate statistical modeling. Understanding how data differs from the norm helps reveal underlying patterns, which can help you make better decisions.

In practice, skewness can affect the outcome of statistical modeling. Many statistical techniques such as linear regressio and ANOVA assume normality in residuals. This implies minimal skewness, and a kurtosis that is close to a normal distribution. Normalizing data can be done if the skewness of the data is significant. Transformations such as log, square root or Box-Cox are used. If not taken into account, high kurtosis may also affect standard errors and confidence ranges.


The context in which the data is presented will also influence how these metrics are interpreted. In psychological tests, for example, a positively-skewed distribution may indicate that the majority of participants have low anxiety levels, while a small number report extremely high anxiety. In contrast, a significant kurtosis in data from quality control could suggest that it is necessary to investigate any outliers which may indicate production defects.

Data Science Course in Pune with Placement Support

Data Science Course in Pune with practical learning and job-focused skills. Enroll in professional Data Science Classes in Pune for career advancement.
Gusto
Magkomento
Ibahagi
 Mag-load ng higit pang mga post
    Impormasyon
    • Lalaki
    • mga post 1
    Mga album 
    (0)
    Mga kaibigan 
    (0)
    Mga gusto 
    (1)
    Mga grupo 
    (1)

© 2025 Bytevid Social

Wika

  • Tungkol sa
  • Direktoryo
  • Blog
  • Makipag-ugnayan sa amin
  • Mga developer
  • Higit pa
    • Patakaran sa Privacy
    • Mga Tuntunin ng Paggamit

Unfriend

Sigurado ka bang gusto mong i-unfriend?

Iulat ang User na ito

Mahalaga!

Sigurado ka bang gusto mong alisin ang miyembrong ito sa iyong pamilya?

Sinundot mo Gurpreet255

Ang bagong miyembro ay matagumpay na naidagdag sa iyong listahan ng pamilya!

I-crop ang iyong avatar

avatar

Pagandahin ang iyong larawan sa profile

Magagamit na balanse

0

Mga imahe


© 2025 Bytevid Social

  • Bahay
  • Tungkol sa
  • Makipag-ugnayan sa amin
  • Patakaran sa Privacy
  • Mga Tuntunin ng Paggamit
  • Blog
  • Mga developer
  • Wika

© 2025 Bytevid Social

  • Bahay
  • Tungkol sa
  • Makipag-ugnayan sa amin
  • Patakaran sa Privacy
  • Mga Tuntunin ng Paggamit
  • Blog
  • Mga developer
  • Wika

Matagumpay na naiulat ang komento.

Matagumpay na naidagdag ang post sa iyong timeline!

Naabot mo na ang iyong limitasyon na 5000 mga kaibigan!

Error sa laki ng file: Ang file ay lumampas sa pinapayagang limitasyon (92 MB) at hindi maaaring i-upload.

Pinoproseso ang iyong video, Ipapaalam namin sa iyo kapag handa na itong mapanood.

Hindi makapag-upload ng file: Ang uri ng file na ito ay hindi suportado.

Nakakita kami ng ilang nilalamang pang-adulto sa larawang na-upload mo, kaya tinanggihan namin ang iyong proseso ng pag-upload.

Ibahagi ang post sa isang grupo

Ibahagi sa isang page

Ibahagi sa user

Naisumite ang iyong post, susuriin namin ang iyong nilalaman sa lalong madaling panahon.

Para mag-upload ng mga larawan, video, at audio file, kailangan mong mag-upgrade sa pro member. Mag-upgrade sa Pro

I-edit ang Alok

0%

Magdagdag ng tier








Pumili ng larawan
Tanggalin ang iyong tier
Sigurado ka bang gusto mong tanggalin ang tier na ito?

Mga pagsusuri

Upang maibenta ang iyong nilalaman at mga post, magsimula sa pamamagitan ng paglikha ng ilang mga pakete. Monetization

Magbayad sa pamamagitan ng Wallet

Magdagdag ng Package

Tanggalin ang iyong address

Sigurado ka bang gusto mong tanggalin ang address na ito?

Alisin ang iyong monetization package

Sigurado ka bang gusto mong tanggalin ang package na ito?

Mag-unsubscribe

Sigurado ka bang gusto mong mag-unsubscribe sa user na ito? Tandaan na hindi mo matitingnan ang anuman sa kanilang pinagkakakitaang nilalaman.

Alerto sa Pagbabayad

Bibili ka na ng mga item, gusto mo bang magpatuloy?
Humiling ng Refund

Wika

  • Arabic
  • Bengali
  • Chinese
  • Croatian
  • Danish
  • Dutch
  • English
  • Filipino
  • French
  • German
  • Hebrew
  • Hindi
  • Indonesian
  • Italian
  • Japanese
  • Korean
  • Persian
  • Portuguese
  • Russian
  • Spanish
  • Swedish
  • Turkish
  • Urdu
  • Vietnamese