Bytevid Social Logo
    • Pesquisa avançada
  • Visitante
    • Login
    • Registrar
    • Modo noturno
Gurpreet255 Cover Image
User Image
Arraste para reposicionar a cobertura
Gurpreet255 Profile Picture
Gurpreet255

@Gurpreet255

  • Oś czasu
  • Grupos
  • Curtiu
  • Amigos
  • Fotos
  • Vídeos
  • Carretel
Gurpreet255 profile picture Gurpreet255 profile picture
Gurpreet255
12 horas - Traduzir

How do you interpret skewness and kurtosis in data

Two important statistical concepts are kurtosis and skewness. They describe the shape of distributions in data analysis. Understanding these measures provides deeper insights into a dataset’s underlying structure, which can be useful for preparing data to be used in modeling, hypothesis tests, or business decisions. The skewness of a dataset and its kurtosis are more sophisticated than basic measures such as mean and standard deviation. https://www.sevenmentor.com/da....ta-science-course-in


Skewness is the asymmetry in the distribution of data values. Skewness is equal to zero in a distribution that is perfectly symmetrical, such as the normal distribution. Positive skew means that the tail of the right distribution (higher values), is longer and fatter than its left counterpart. This means there are more high values, which pull the mean towards the median. It is common to see this in wealth or income distributions where a few high values can inflate the mean. A negative skew is when the left tail of values (lower values), which indicates more extreme values, is longer. This pulls the mean further to the right. This can happen in situations like exam results, where the majority of students score well, but a small number score significantly less.


Kurtosis measures, on the contrary, the “tailedness”, that is, the weight or lightness of the tails in comparison with a normal distribution. It can be used to identify outliers, and their extremes. In practical analysis, excess kurtosis can be calculated by subtracting 3 from the actual value of kurtosis. Positive excess kurtosis, or leptokurtic, indicates a heavy tail and sharp peak. This implies a higher likelihood of outliers. It is crucial in risk management. This is especially true in financial data where extreme values may indicate potential risks. A negative excess (platykurtic), on the other hand, indicates a flat peak and light tails. This means fewer extreme outliers.


In practice, skewness can affect the outcome of statistical modeling. Many statistical techniques such as linear regressio and ANOVA assume normality in residuals. This implies minimal skewness, and a kurtosis that is close to a normal distribution. Normalizing data can be done if the skewness of the data is significant. Transformations such as log, square root or Box-Cox are used. If not taken into account, high kurtosis may also affect standard errors and confidence ranges.


The context in which the data is presented will also influence how these metrics are interpreted. In psychological tests, for example, a positively-skewed distribution may indicate that the majority of participants have low anxiety levels, while a small number report extremely high anxiety. In contrast, a significant kurtosis in data from quality control could suggest that it is necessary to investigate any outliers which may indicate production defects.


In addition, statistical software will often highlight skewness values and kurtosis that are significantly different from zero or three, respectively. This is especially true for large samples where even small deviations may be statistically significant. But statistical significance is not always the same as practical significance. Analysts should consider the magnitude of the deviation and its impact on the analysis results. Data Science Course in Pune


Skewness and Kurtosis can be used to understand the shape and characteristics a dataset. They can be used to detect asymmetry or outliers and guide data preprocessing such as transformations and outlier treatment. By interpreting these measures carefully, you can ensure more accurate statistical modeling. Understanding how data differs from the norm helps reveal underlying patterns, which can help you make better decisions.

In practice, skewness can affect the outcome of statistical modeling. Many statistical techniques such as linear regressio and ANOVA assume normality in residuals. This implies minimal skewness, and a kurtosis that is close to a normal distribution. Normalizing data can be done if the skewness of the data is significant. Transformations such as log, square root or Box-Cox are used. If not taken into account, high kurtosis may also affect standard errors and confidence ranges.


The context in which the data is presented will also influence how these metrics are interpreted. In psychological tests, for example, a positively-skewed distribution may indicate that the majority of participants have low anxiety levels, while a small number report extremely high anxiety. In contrast, a significant kurtosis in data from quality control could suggest that it is necessary to investigate any outliers which may indicate production defects.

Data Science Course in Pune with Placement Support

Data Science Course in Pune with practical learning and job-focused skills. Enroll in professional Data Science Classes in Pune for career advancement.
Curtir
Comentario
Compartilhar
 Carregar mais posts
    Info
    • Homem
    • Postagens 1
    álbuns 
    (0)
    Amigos 
    (0)
    Curtiu 
    (1)
    Grupos 
    (1)

© 2025 Bytevid Social

Linguagem

  • Sobre
  • Diretório
  • Blog
  • Contato
  • Desenvolvedores
  • Mais
    • Privacidade
    • Termos de Uso

Anular

Tem certeza de que quer desamor?

Denunciar este usuário

Importante!

Tem certeza de que deseja remover esse membro da sua família?

Você cutucou Gurpreet255

Novo membro foi adicionado com sucesso à sua lista de família!

Recorte seu avatar

avatar

Melhore sua foto de perfil

Saldo disponível

0

Imagens


© 2025 Bytevid Social

  • Início
  • Sobre
  • Contato
  • Privacidade
  • Termos de Uso
  • Blog
  • Desenvolvedores
  • Linguagem

© 2025 Bytevid Social

  • Início
  • Sobre
  • Contato
  • Privacidade
  • Termos de Uso
  • Blog
  • Desenvolvedores
  • Linguagem

Comentário relatado com sucesso.

O post foi adicionado com sucesso à sua linha de tempo!

Você atingiu seu limite de amigos 5000!

Erro de tamanho de arquivo: o arquivo excede permitido o limite (92 MB) e não pode ser carregado.

Seu vídeo está sendo processado, informaremos você quando estiver pronto para ver.

Não é possível carregar um arquivo: esse tipo de arquivo não é suportado.

Detetámos algum conteúdo adulto na imagem que carregou, por isso, recusámos o seu processo de carregamento.

Compartilhar postagem em um grupo

Compartilhar para uma página

Compartilhar para o usuário

Sua postagem foi enviada. Analisaremos seu conteúdo em breve.

Para fazer upload de imagens, vídeos e arquivos de áudio, é necessário atualizar para o membro profissional. Upgrade To Pro

Editar oferta

0%

Adicionar camada








Selecione uma imagem
Exclua sua camada
Tem certeza de que deseja excluir esta camada?

Rever

Para vender seu conteúdo e postagens, comece criando alguns pacotes. Monetização

Pague pela Wallet.

Adicionar pacote

Exclua seu endereço

Tem certeza de que deseja excluir este endereço?

Remova seu pacote de monetização

Tem certeza de que deseja excluir este pacote?

Cancelar subscrição

Tem certeza de que deseja cancelar a inscrição deste usuário? Lembre-se de que você não poderá visualizar nenhum conteúdo monetizado.

Alerta de pagamento

Você está prestes a comprar os itens, deseja prosseguir?
Peça um reembolso

Linguagem

  • Arabic
  • Bengali
  • Chinese
  • Croatian
  • Danish
  • Dutch
  • English
  • Filipino
  • French
  • German
  • Hebrew
  • Hindi
  • Indonesian
  • Italian
  • Japanese
  • Korean
  • Persian
  • Portuguese
  • Russian
  • Spanish
  • Swedish
  • Turkish
  • Urdu
  • Vietnamese