Bytevid Social Logo
    • Napredno pretraživanje
  • Gost
    • Prijaviti se
    • Registar
    • Noćni način
Gurpreet255 Cover Image
User Image
Povucite za promjenu položaja poklopca
Gurpreet255 Profile Picture
Gurpreet255

@Gurpreet255

  • Vremenska Crta
  • grupe
  • sviđanja
  • Prijatelji
  • Fotografije
  • Video zapisi
  • Koluti
Gurpreet255 profile picture Gurpreet255 profile picture
Gurpreet255
11 sati - Prevedi

How do you interpret skewness and kurtosis in data

Two important statistical concepts are kurtosis and skewness. They describe the shape of distributions in data analysis. Understanding these measures provides deeper insights into a dataset’s underlying structure, which can be useful for preparing data to be used in modeling, hypothesis tests, or business decisions. The skewness of a dataset and its kurtosis are more sophisticated than basic measures such as mean and standard deviation. https://www.sevenmentor.com/da....ta-science-course-in


Skewness is the asymmetry in the distribution of data values. Skewness is equal to zero in a distribution that is perfectly symmetrical, such as the normal distribution. Positive skew means that the tail of the right distribution (higher values), is longer and fatter than its left counterpart. This means there are more high values, which pull the mean towards the median. It is common to see this in wealth or income distributions where a few high values can inflate the mean. A negative skew is when the left tail of values (lower values), which indicates more extreme values, is longer. This pulls the mean further to the right. This can happen in situations like exam results, where the majority of students score well, but a small number score significantly less.


Kurtosis measures, on the contrary, the “tailedness”, that is, the weight or lightness of the tails in comparison with a normal distribution. It can be used to identify outliers, and their extremes. In practical analysis, excess kurtosis can be calculated by subtracting 3 from the actual value of kurtosis. Positive excess kurtosis, or leptokurtic, indicates a heavy tail and sharp peak. This implies a higher likelihood of outliers. It is crucial in risk management. This is especially true in financial data where extreme values may indicate potential risks. A negative excess (platykurtic), on the other hand, indicates a flat peak and light tails. This means fewer extreme outliers.


In practice, skewness can affect the outcome of statistical modeling. Many statistical techniques such as linear regressio and ANOVA assume normality in residuals. This implies minimal skewness, and a kurtosis that is close to a normal distribution. Normalizing data can be done if the skewness of the data is significant. Transformations such as log, square root or Box-Cox are used. If not taken into account, high kurtosis may also affect standard errors and confidence ranges.


The context in which the data is presented will also influence how these metrics are interpreted. In psychological tests, for example, a positively-skewed distribution may indicate that the majority of participants have low anxiety levels, while a small number report extremely high anxiety. In contrast, a significant kurtosis in data from quality control could suggest that it is necessary to investigate any outliers which may indicate production defects.


In addition, statistical software will often highlight skewness values and kurtosis that are significantly different from zero or three, respectively. This is especially true for large samples where even small deviations may be statistically significant. But statistical significance is not always the same as practical significance. Analysts should consider the magnitude of the deviation and its impact on the analysis results. Data Science Course in Pune


Skewness and Kurtosis can be used to understand the shape and characteristics a dataset. They can be used to detect asymmetry or outliers and guide data preprocessing such as transformations and outlier treatment. By interpreting these measures carefully, you can ensure more accurate statistical modeling. Understanding how data differs from the norm helps reveal underlying patterns, which can help you make better decisions.

In practice, skewness can affect the outcome of statistical modeling. Many statistical techniques such as linear regressio and ANOVA assume normality in residuals. This implies minimal skewness, and a kurtosis that is close to a normal distribution. Normalizing data can be done if the skewness of the data is significant. Transformations such as log, square root or Box-Cox are used. If not taken into account, high kurtosis may also affect standard errors and confidence ranges.


The context in which the data is presented will also influence how these metrics are interpreted. In psychological tests, for example, a positively-skewed distribution may indicate that the majority of participants have low anxiety levels, while a small number report extremely high anxiety. In contrast, a significant kurtosis in data from quality control could suggest that it is necessary to investigate any outliers which may indicate production defects.

Data Science Course in Pune with Placement Support

Data Science Course in Pune with practical learning and job-focused skills. Enroll in professional Data Science Classes in Pune for career advancement.
Kao
Komentar
Udio
 Učitaj još postova
    Info
    • Muški
    • postovi 1
    Albumi 
    (0)
    Prijatelji 
    (0)
    sviđanja 
    (1)
    grupe 
    (1)

© 2025 Bytevid Social

Jezik

  • Oko
  • Imenik
  • Blog
  • Kontaktirajte nas
  • Programeri
  • Više
    • Politika privatnosti
    • Uvjeti korištenja

Ukini prijateljstvo

Jeste li sigurni da želite prekinuti prijateljstvo?

Prijavi ovog korisnika

Važno!

Jeste li sigurni da želite ukloniti ovog člana iz svoje obitelji?

Bockali ste Gurpreet255

Novi član je uspješno dodan na vaš obiteljski popis!

Izrežite svoj avatar

avatar

Poboljšajte svoju profilnu sliku

Dostupno Stanje

0

Slike


© 2025 Bytevid Social

  • Dom
  • Oko
  • Kontaktirajte nas
  • Politika privatnosti
  • Uvjeti korištenja
  • Blog
  • Programeri
  • Jezik

© 2025 Bytevid Social

  • Dom
  • Oko
  • Kontaktirajte nas
  • Politika privatnosti
  • Uvjeti korištenja
  • Blog
  • Programeri
  • Jezik

Komentar je uspješno prijavljen.

Objava je uspješno dodana na vašu vremensku traku!

Dosegli ste ograničenje od 5000 prijatelja!

Pogreška veličine datoteke: datoteka premašuje dopušteno ograničenje (92 MB) i ne može se učitati.

Vaš se videozapis obrađuje. Obavijestit ćemo vas kada bude spreman za gledanje.

Nije moguće učitati datoteku: ova vrsta datoteke nije podržana.

Otkrili smo sadržaj za odrasle na slici koju ste prenijeli, stoga smo odbili vaš postupak učitavanja.

Podijelite objavu u grupi

Podijelite na stranicu

Podijeli s korisnikom

Vaš je post poslan, uskoro ćemo pregledati vaš sadržaj.

Za prijenos slika, videozapisa i audio datoteka morate nadograditi na pro člana. Nadogradi na pro

Uredi ponudu

0%

Dodajte razinu








Odaberite sliku
Izbrišite svoju razinu
Jeste li sigurni da želite izbrisati ovu razinu?

Recenzije

Kako biste prodali svoj sadržaj i postove, počnite s stvaranjem nekoliko paketa. Monetizacija

Plaćanje novčanikom

Dodaj paket

Izbriši svoju adresu

Jeste li sigurni da želite izbrisati ovu adresu?

Uklonite svoj paket monetizacije

Jeste li sigurni da želite izbrisati ovaj paket?

Odjavi pretplatu

Jeste li sigurni da želite otkazati pretplatu na ovog korisnika? Imajte na umu da nećete moći vidjeti njihov unovčeni sadržaj.

Upozorenje o plaćanju

Spremate se kupiti artikle, želite li nastaviti?
Zatražite povrat novca

Jezik

  • Arabic
  • Bengali
  • Chinese
  • Croatian
  • Danish
  • Dutch
  • English
  • Filipino
  • French
  • German
  • Hebrew
  • Hindi
  • Indonesian
  • Italian
  • Japanese
  • Korean
  • Persian
  • Portuguese
  • Russian
  • Spanish
  • Swedish
  • Turkish
  • Urdu
  • Vietnamese