Bytevid Social Logo
    • avancerad sökning
  • Gäst
    • Logga in
    • Registrera
    • Nattläge
Gurpreet255 Cover Image
User Image
Dra för att flytta omslaget
Gurpreet255 Profile Picture
Gurpreet255

@Gurpreet255

  • Tidslinje
  • Grupper
  • Gillar
  • Vänner
  • Foton
  • videoklipp
  • Rullar
Gurpreet255 profile picture Gurpreet255 profile picture
Gurpreet255
11 timmar - Översätt

How do you interpret skewness and kurtosis in data

Two important statistical concepts are kurtosis and skewness. They describe the shape of distributions in data analysis. Understanding these measures provides deeper insights into a dataset’s underlying structure, which can be useful for preparing data to be used in modeling, hypothesis tests, or business decisions. The skewness of a dataset and its kurtosis are more sophisticated than basic measures such as mean and standard deviation. https://www.sevenmentor.com/da....ta-science-course-in


Skewness is the asymmetry in the distribution of data values. Skewness is equal to zero in a distribution that is perfectly symmetrical, such as the normal distribution. Positive skew means that the tail of the right distribution (higher values), is longer and fatter than its left counterpart. This means there are more high values, which pull the mean towards the median. It is common to see this in wealth or income distributions where a few high values can inflate the mean. A negative skew is when the left tail of values (lower values), which indicates more extreme values, is longer. This pulls the mean further to the right. This can happen in situations like exam results, where the majority of students score well, but a small number score significantly less.


Kurtosis measures, on the contrary, the “tailedness”, that is, the weight or lightness of the tails in comparison with a normal distribution. It can be used to identify outliers, and their extremes. In practical analysis, excess kurtosis can be calculated by subtracting 3 from the actual value of kurtosis. Positive excess kurtosis, or leptokurtic, indicates a heavy tail and sharp peak. This implies a higher likelihood of outliers. It is crucial in risk management. This is especially true in financial data where extreme values may indicate potential risks. A negative excess (platykurtic), on the other hand, indicates a flat peak and light tails. This means fewer extreme outliers.


In practice, skewness can affect the outcome of statistical modeling. Many statistical techniques such as linear regressio and ANOVA assume normality in residuals. This implies minimal skewness, and a kurtosis that is close to a normal distribution. Normalizing data can be done if the skewness of the data is significant. Transformations such as log, square root or Box-Cox are used. If not taken into account, high kurtosis may also affect standard errors and confidence ranges.


The context in which the data is presented will also influence how these metrics are interpreted. In psychological tests, for example, a positively-skewed distribution may indicate that the majority of participants have low anxiety levels, while a small number report extremely high anxiety. In contrast, a significant kurtosis in data from quality control could suggest that it is necessary to investigate any outliers which may indicate production defects.


In addition, statistical software will often highlight skewness values and kurtosis that are significantly different from zero or three, respectively. This is especially true for large samples where even small deviations may be statistically significant. But statistical significance is not always the same as practical significance. Analysts should consider the magnitude of the deviation and its impact on the analysis results. Data Science Course in Pune


Skewness and Kurtosis can be used to understand the shape and characteristics a dataset. They can be used to detect asymmetry or outliers and guide data preprocessing such as transformations and outlier treatment. By interpreting these measures carefully, you can ensure more accurate statistical modeling. Understanding how data differs from the norm helps reveal underlying patterns, which can help you make better decisions.

In practice, skewness can affect the outcome of statistical modeling. Many statistical techniques such as linear regressio and ANOVA assume normality in residuals. This implies minimal skewness, and a kurtosis that is close to a normal distribution. Normalizing data can be done if the skewness of the data is significant. Transformations such as log, square root or Box-Cox are used. If not taken into account, high kurtosis may also affect standard errors and confidence ranges.


The context in which the data is presented will also influence how these metrics are interpreted. In psychological tests, for example, a positively-skewed distribution may indicate that the majority of participants have low anxiety levels, while a small number report extremely high anxiety. In contrast, a significant kurtosis in data from quality control could suggest that it is necessary to investigate any outliers which may indicate production defects.

Data Science Course in Pune with Placement Support

Data Science Course in Pune with practical learning and job-focused skills. Enroll in professional Data Science Classes in Pune for career advancement.
Tycka om
Kommentar
Dela med sig
 Ladda fler inlägg
    Info
    • Manlig
    • inlägg 1
    Album 
    (0)
    Vänner 
    (0)
    Gillar 
    (1)
    Grupper 
    (1)

© 2025 Bytevid Social

Språk

  • Handla om
  • Katalog
  • Blogg
  • Kontakta oss
  • Utvecklare
  • Mer
    • Integritetspolicy
    • Villkor

Unfriend

Är du säker på att du vill bli vän?

Rapportera denna användare

Viktig!

Är du säker på att du vill ta bort den här medlemmen från din familj?

Du har petat Gurpreet255

Ny medlem har lagts till i din familjelista!

Beskär din avatar

avatar

Förbättra din profilbild

Tillgängligt Saldo

0

Bilder


© 2025 Bytevid Social

  • Hem
  • Handla om
  • Kontakta oss
  • Integritetspolicy
  • Villkor
  • Blogg
  • Utvecklare
  • Språk

© 2025 Bytevid Social

  • Hem
  • Handla om
  • Kontakta oss
  • Integritetspolicy
  • Villkor
  • Blogg
  • Utvecklare
  • Språk

Kommentaren har rapporterats.

Inlägget har lagts till på din tidslinje!

Du har nått din gräns på 5000 vänner!

Filstorleksfel: Filen överskrider den tillåtna gränsen (92 MB) och kan inte laddas upp.

Din video bearbetas. Vi meddelar dig när den är redo att visas.

Det går inte att ladda upp en fil: Den här filtypen stöds inte.

Vi har upptäckt en del barnförbjudet innehåll på bilden du laddade upp, därför har vi avvisat din uppladdningsprocess.

Dela inlägg i en grupp

Dela till en sida

Dela till användare

Ditt inlägg skickades, vi kommer att granska ditt innehåll snart.

För att ladda upp bilder, videor och ljudfiler måste du uppgradera till proffsmedlem. Uppgradera till PRO

Redigera erbjudande

0%

Lägg till nivå








Välj en bild
Ta bort din nivå
Är du säker på att du vill ta bort den här nivån?

Recensioner

För att sälja ditt innehåll och dina inlägg, börja med att skapa några paket. Intäktsgenerering

Betala med plånbok

Lägg till paket

Radera din adress

Är du säker på att du vill ta bort den här adressen?

Ta bort ditt paket för intäktsgenerering

Är du säker på att du vill ta bort det här paketet?

Säga upp

Är du säker på att du vill avsluta prenumerationen på den här användaren? Tänk på att du inte kommer att kunna se något av deras intäktsgenererade innehåll.

Betalningslarm

Du är på väg att köpa varorna, vill du fortsätta?
Begära återbetalning

Språk

  • Arabic
  • Bengali
  • Chinese
  • Croatian
  • Danish
  • Dutch
  • English
  • Filipino
  • French
  • German
  • Hebrew
  • Hindi
  • Indonesian
  • Italian
  • Japanese
  • Korean
  • Persian
  • Portuguese
  • Russian
  • Spanish
  • Swedish
  • Turkish
  • Urdu
  • Vietnamese